%%5%

Techn/ca R poy{i?-mllo

‘EI_AS A Genera/-Purpose Computer Program for %
t/ze ‘ Equ///b/flum i/‘Drob/em.s of Linear Structures

Volume (‘//.L‘D‘oCument‘az‘ion of the Progra)h |

Senol Utku

JET PROPULSION LABORATORY
CAL!FORNIA INSTITUTE OF TECHNOLOGY
: FASADENA'CAHFORNIA

September 15 1969 ‘




NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Report 32-1240

ELAS— A General-Purpose Computer Program for
the Equilibrium Problems of Linear Structures

Volume Il. Documentation of the Program

Senol Utku

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA

September 15, 1969



Prepared Under Contract No. NAS 7-100
National Aeronautics and Space Administration



Preface

The work described in this report was performed by the Engineering Mechanics
Division of the Jet Propulsion Laboratory.

The ELAS program was developed by Dr. Senol Utku and Dr. Fevzican A.
Akyuz, and is dedicated to the memory of Professor M. Inan of the Technical
University of Istanbul.

TECHNICAL REPORT 32-1240



iv

Acknowledgment

The author is indebted to Vivia Crew for her help in editing all documents
related with the ELAS program.

JPL TECHNICAL REPORT 32-1240



Contents

1. Introduction

H. Theoretical Background .
A. Mathematical Formulation .
B. Numerical Solution Method Based on the Extremum Formulation .

C. The Program .
Il. COMMON Variables and COMMON Blocks of the Program .
Appendix. Corrigenda for Volume |
References

Bibliography

Tables

1lI-1. Sequence and descriptions of COMMON blocks

111-2. Alphabeticat listing of the constituents of COMMON block group 1.

111-3. Meanings of the entries of important vectors .
111-4. Alphabetical list of additional COMMON variables for Link 4 .
111-5. List of additional COMMON variables for Link 4 .

Figures

li-1. Definition of E;,;, augmented matrix

11-2. Flow diagram corresponding to the summations implied by Eq. (25} .

I1I-1. Memory organization for the four links of ELAS .

JPL TECHNICAL REPORT 32-1240

o A W W

11

21

23

23

13
15
17
19
19



vi

Abstract

A general-purpose digital computer program {(named ELAS) for the in-core
solution of linear equilibrium problems of structural mechanics is described for
potential and actual users in Volume I of this report, and is documented in
Volume II. The program requires minimum input for the description of the
problem. The solution is obtained by means of the displacement method and
the finite element technique. Almost any geometry and structure may be handled
because of the availability of lineal, triangular, quadrilateral, tetrahedral, hexahe-
dral, conical, triangular torus, and quadrilateral torus elements. The assumption
of piecewise linear deflection distribution insures monotonic convergence of the
deflections from the stiffer side with decreasing mesh size. The stresses are pro-
vided by the best-fit strain tensors in the least-squares sense at the mesh points
where the deflections are given. The selection of local coordinate systems when-
ever necessary is automatic. The core memory is efficiently used by means of
dynamic memory allocation, an optional mesh-point relabelling scheme, imposi-
tion of the boundary conditions during the assembly time, and the straight-line
storage of the rows of the stiffness matrix within variable bandwidth and the
main diagonal. The number of unsuppressed degrees of freedom that can be
handled in a given problem is 500 to 600 for a typical structure, but might far
exceed these average values for special types of problems; the execution time
of such problems is about four minutes in 32K IBM 7094 Model I machines. The
program is written in FORTRAN II language. The source deck consists of about
8000 cards and the object deck contains about 1400 binary cards. The physical
program (standard ELAS) is available from COSMIC, the agency for the dis-
tribution of NASA computer programs.
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l. Introduction

Volume I, User’s Manual, of this report gives a general
description of ELAS,* a general-purpose digital computer
program for the in-core solution of linear equilibrium
problems of structural mechanics, and contains the infor-
mation necessary for input preparation, arrangement of
the physical program, and interpretation of output and
error messages.

Volume I, Documentation of the Program, is published
in two parts: the present volume—the basic Volume II—
which gives the theoretical background of the program
and contains tables and figures describing the COMMON
variables, their meanings, and their arrangement in
COMMON; and an Addendum to Volume II, which

*First two syllables of the word Elasticity.
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contains program descriptions, flowcharts, and source
program listings for all program elements of ELAS/Level
3. (The original version of the ELAS program made
available from COSMIC* in April 1968 is designated
ELAS/Level 0. Subsequent program corrections made in
January 1969, March 1969, and May 1969 updated the
program to ELAS/Level 1, ELAS/Level 2, and ELAS/
Level 3, respectively.)

In addition to the list of references cited in the text,
a list of documented works related with the development
of the ELAS program is given in the bibliography. A
corrigenda for Volume I is given in the Appendix.

**Computer Software Management and Information Center, Com-
puter Center, University of Georgia, Athens, Georgia, 30601,
telephone 404-542-3265.






ll. Theoretical Background

This section summarizes the mathematical formulation,
the numerical method of solution, and the design features
of the program.

A. Mathematical Formulation

Let V denote the material volume of the structure
within the closed boundary S. Let x, « = 1,2,3, denote
a fixed right-handed Cartesian coordinate system. The
Greek subscripts always refer to these axes; therefore, oag
is the stress tensor described in such a coordinate system.
Let u, denote the displacement vector; 7, the body force;
m the unit mass; double dots above, the second time de-
rivative; and comma in the subscript the partial differen-
tiation with respect to the space variable represented or
implied by the subscript following the comma. If it is
assumed that repeated subscripts imply summation over
the range, the equilibrium of any particle within V may
be expressed as

O'Ba’ﬁ + ﬁ'a = m'ija (1)
In the equilibrium problems, the loading is such that

ta=0 @)
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Therefore, substitution of . from Eq. (2) into Eq. (1)
yields

opa g+ Pa =0 inV (3)

Let § denote the portion of S where the tractions are
prescribed. The equilibrium condition on §’ is

Tap g+ Pa =0 4)

where ng is the unit normal vector and p. is the prescribed
traction. The stress—strain relationship of the material is

g = Digys (&5 — G%) (5)
where €5 is the prescribed strain tensor, €y; is the strain
tensor, and Dagys is the material matrix, which is positive-
definite and symmetrical, so that

Dagys = Dysag = Dgays = Dapoy

The strain displacement relationships are

-1
€ag — —i(ua’ﬂ -+ UB'a) (6)



Finally, the displacement boundary conditions may be
stated as

u, = ul onS” (7)
where u} denotes the prescribed displacements on S”.
It should be noted that

§+8"=5 8)

In an equilibrium problem, usually V, §’, S, pa, 42 P
Dogys, ng, and €, are given and ., €5, and o.g are
Bv6, Mg v6 g B 8

requested.

Equations (3) through (8) constitute the differential
equation formulation of the equilibrium problem in three-
dimensional continuum. A finite difference solution based
on this formulation may be set up as follows. A regular
mesh is placed in V such that §’ and S” are determined
by the mesh points. If S is not defined by coordinate
surfaces, such representation of S’ and S’ is only approx-
imate. The displacements u. at the mesh points in V and
on § are taken as the primary unknowns. The prescribed
uf displacements are assigned to the mesh points of S”.
With the use of Eq. (6), €. at the mesh points in V and
on S are approximated by the first differences of 1, and
ul. Then, by the use of Eq. (5), the values of ¢ag are
expressed at the mesh points. Finally, depending upon the
mesh point in V or on S, Eq. (3) or Eq. (4), respectively,
is used to write the difference equations for the unknown
displacements. After the unknown displacements from
these equations have been computed, the strains and the
stresses may be computed from the finite difference ap-
proximations of Eq. (6) and Eq. (5). Such a solution
method has the following drawbacks:

(1) To minimize the truncation errors, a regular mesh
in V is used; however, this causes approximate
representation of boundary S and, therefore, in-
creases the truncation errors in the finite difference
approximations of Eqs. (4) and (7). Since the errors
in the finite difference approximations of Egs. (4)
and (7) dominate in the solution more (Ref. 1) than
the errors in the finite difference approximation of
Eq. (3), either an irregular mesh in V may be
considered to represent S more accurately, or
higher-order formulas for the boundary conditions
are used, although neither scheme is desirable in
a general-purpose digital computer program.

(2) Because of the symmetry and the positive-definite-
ness of Dagys, the formulation given by Egs. (3)
through (8) is self-adjoint and positive-definite.
However, the coefficient matrix of the unknown

displacements in the finite difference equilibrium
equations is, in general, neither symmetric nor
positive-definite. The loss of the two desirable
qualities of the problem in the numerical formula-
tion increases the storage requirements and solution
time. Because of these setbacks, the mathematical
formulation given by Eqs. (3) through (8) is modi-
fied slightly as explained in the following paragraph.

Consider the quantity = defined as

m™ = '}‘/ Eaﬁﬂaﬁdv - / utx’ﬁadV"""/- UQpadS
2 14 14 8
9)

where dV is the volume element, dS the area element,
and the other symbols are as previously defined. Consider
the displacement fields satisfying Eq. (7). For each such
displacement field, by means of Egs. (9), (6), and (5), a
scalar = may be computed. It can be shown that, for
sufficiently smooth displacement fields satisfying Eq. (7),
the stationary point of =, i.e., the point for which

$w =0 (10)

also satisfies Egs. (3) and (4). In fact, by the methods of
calculus of variations, Eq. (10) yields Eq. (3) as the Euler
differential equation, and Eq. (4) as the additional bound-
ary condition. Therefore, Eq. (10) is an equivalent state-
ment of Egs. (3) and (4). The quantity = is known as the
“total potential energy” of the system. Thus, the formula-
tion given by Eq. (10) reduces the problem to that of
locating the stationary point of the total potential energy
functional. How the numerical solution is set up from
this formulation (which is sometimes referred to as the
extremum formulation of the problem), and its advantages,
are discussed in the next subsection.

B. Numerical Solution Method Based on the
Extremum Formulation

A random mesh is placed in V such that the mesh
elements are line segments, triangles, quadrilaterals, tetra-
hedrons, hexahedrons, conical segments, or triangular or
quadrilateral tori. Some of the mesh elements are shown
in Fig. I1I-1 (Vol. I). The types of mesh elements that may
be used in different structures are given in Table III-2
(Vol. I). The randomness of the mesh enables the selection
of mesh points that are exactly on the boundary S. For
clarity, the mesh points are labelled sequentially, with
integer numbers starting from 1. If there are s number of
mesh points, there are s! different types of possible label-
ling. In the discussion that follows it will become obvious
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that some of these labelling systems are more desirable
than others.

It is assumed that one of the possible s! systems is
selected. Next, the mesh elements are labelled sequen-
tially with integers. If there are m number of mesh ele-
ments, there are m! number of different labelling systems.
It is supposed that one of the possible m! systems is
selected. In what follows, superscript m indicates the
element label, and subscripts t or s indicate the mesh
point label. To solve the equilibrium problem formulated
in Section II-A numerically, instead of computing 4. at
every point of V and S, an attempt is made to find, at the
mesh points, certain related quantities that define the
distorted configuration of the structure in the same way
as ua. These quantities are called deflections, which are
displacements /rotations at the mesh points. Given a mesh
point, the total number of independent deflection com-
ponents is the number of degrees of freedom of that mesh
point. In Table III-1 (Vol. I), the deflection components
at a mesh point of different structures are shown as re-
ferred to an overall coordinate system. Let k denote the
number of degrees of freedom at a mesh point of a struc-
ture. The value of k for different structures is given in
the last column of Table III-1 (Vol. I). It will be assumed
that the deflection components at a mesh point are ordered
as shown in the table. The subscripts k and [ will be used
to indicate the sequence number implied by this ordering.
If a prime appears on k or I, this implies that a local co-
ordinate system is used in defining the degree-of-freedom
directions. Let gy, denote the kth deflection component
at mesh point s. A mesh element may be defined by the
mesh points that are coincident with its vertices. For
clarity in referencing, the convention of Table III-5
(Vol. 1) is adopted in ordering the vertices of mesh ele-
ments. The type numbers shown in this table refer to the
numbers shown on the shaded squares of Table I1I-2
(Vol. I). Subscripts g and h will be exclusively used to
denote the sequence number of a vertex in the g number
of vertices of an element. -

With the preceding definitions, the method used to
obtain the stationary point of the total potential energy
functional may now be explained. This is the classical
Ritz procedure (Ref. 2), where the undetermined param-
eters of the problem are the unknown components of gy,
deflections, Equation (9) is first written as

T = }" Eaﬁ Taf d " — / ua%’a de' _/ Ua pa ds’m
2 vm ym Srm
(11)
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where the repeated index implies the summation over the
range. Next, an attempt is made to select a family of
displacement fields that are sufficiently smooth, but
otherwise arbitrary, ignoring for the time being the
essential boundary conditions of Eq. (7). A piecewise
linear displacement field is acceptable in this sense (Ref. 3).
Of course there are other piecewise continuous fields that
are acceptably smooth. However, to simplify the under-
standing of the procedure, it is assumed that the displace-
ment fields are piecewise linear. Such a field may be
described mathematically for the mth element in terms
of the deflections of its vertices as

Uy T By gy, 6,, 1 M 44 %g, + rigid body movement
(12)

where the primes indicate the local coordinate system
of the element. The coefficients u7, constitute a binary
array such that, for a given m and h, it is zero throughout
the range of ¢, but 1 at the value of ¢ corresponding to
the hth vertex of the mth element. In fact, u2 q,, is the
list of deflection components pertaining to the vertices
of the mth element. The matrix Q;.; in Eq. (12) is the
coordinate ‘transformation matrix, where, for fixed V', it
represents the direction cosines of the local axis related
with ¢ degree-of-freedom direction in the coordinate sys-
tem associated with I. The space variable xg. is the dis-
tance measured along the 8’th local axis. The coefficients
B g 1.5 may be computed from the local coordinates of
the vertices of the mth element. In Table III-3 (Vol. I),
for different mesh elements, the orientation of the local
coordinate system relative to the overall coordinate sys-
tem is given. It should be noted that Eq. (12) is an
approximation of the true displacements in the mth ele-
ment, even if the exact values of deflection components
q1: are known. However, it may be shown that the error
decreases with decreasing mesh size. With the use of ua
from Eq. (12) in Eq. (6), the strains in the mth element,
as referred to the local coordinate system of the mth
element, may be expressed as

€ = Barpyn Quer 1 Qs (13)

Let De-g-y 5 denote the material constants of the mth
element as referred to the local coordinate system of the
mth element. If

~ lod
Kiyn = Qwx (/ Bs y:k g Dsry arpr B l'th) Qu
ym
(14)



and

Py = akk (/ B gk o %p: Par AV +/
Vm

are defined, = of Eq. (11) may be expressed as
1 m m m
™= Qe by Kipu i qre = Gus (5P + Qus) (16)

where Qs denotes the prescribed concentrated loads at
the mesh points. The deflection components gxs (or qi¢)
should be such that, on §’, they satisfy the essential bound-
ary conditions of Eq. (7). Let d; denote the portion of g1,
which is unknown. The essential boundary conditions may
be expressed as

qu: = eid; + €, (17)

where the coefficients e;;; and €Y, are quantities that may
easily be determined from Eq. (7). For example, if there
are no prescribed deflections in the problem, e;;; is a
binary array containing only one 1 in the whole range of
i for a given lt, and e}, is zero throughout. Actually, the
d; are the true undetermined parameters of the problem.
If g, is substituted from Eq. (17) into Eq. (16), the values
of d; corresponding to the stationary point of = may be
obtained from the set of linear equations

T = 0 (18)
since

8n = ,d; de (19)

The equations given by Eq. (18) may be rewritten as

Hijdi = & (20)
where
is = ensi 1 Ky, pive s (21)
and
Qi = €gsi (IL;:;P';Z, + ka)  Ersi IL%K%M ,U.the(;t (22)

The coefficients KT, constitute the element stiffness
matrix of the mth element and Py, is called the mth ele-
ment load vector. In Eq. (20), the coefficient matrix 9¢;;
is the stiffness matrix associated with the directions of d;
deflections, and the right-hand-side vector &; lists the
loads in these directions. Equations (21) and (22) indicate
how the coefficient matrix and the right-hand-side vector
of the governing equations can be systematically gener-
ated from the element stiffness matrices and load vectors.

Bergon oy pe S ) (15)

8 m

The operation implied by Egs. (21) and (22) is referred
to as the assembling of the elemental matrices. Because

of the positive-definiteness and the symmetry of Dagys,
Eq. (21) shows that

inj = QCji (23)

and ©X;; is also positive-definite. Once the unknown de-
flections d; are solved from Eq. (20), the complete deflec-
tions q;; are obtained by substituting d; into Eq. (17).
After deflections gy, have been computed, the strains and
the stresses at the mesh points may be computed as
described in Ref. 4.

The method of solution described in the preceding has
the following advantages:

(1) Since the mesh is random, the boundaries §” and §”
may be closely approximated, and thus minimize
truncation errors.

(2) Any a priori knowledge about the variation of u, in
V or-on S may be used advantageously by varying
the mesh size accordingly to minimijze the trunca-
tion errors.

(3) The self-adjoint character, as well as the positive-
definiteness of the problem, is preserved, since £¥;;
is always symmetric and positive definite.

C. The Program

1. Criteria for Storage Allocation. All the input data
previously mentioned (see Fig. IV-1, Vol. I) are stored
permanently in COMMON after their validity is checked.
No fixed-length block is assigned to these diversified data.
The data are compactly stored as a string of variable
length. This enables the program to compete in obtaining
priorities efficiently in a multiprogramming environment.
After reading the control card, the program determines
the pointers of each of the data blocks relative to the
beginning of COMMON. When the other input data
become available, they are placed in the proper place in
COMMGON by the pointers. Although the locations of the
data blocks vary from one job to another, the locations
of the pointers and the control information provided by
the control card have fixed locations at the beginning of
COMMON. The remainder of the core is assigned for
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the program instructions and temporary storage for the
coeflicient matrix and the right-hand-side vector of the
governing equations. The program consists of four links,
and since all the program instructions are not required
simultaneously, only the instructions for each link in turn
as needed are retained in the core.

A sketch of the governing equations in Eq. (20) is given
in Fig. II-1 (Vol. I). Since the coefficient matrix is sym-
metric, the program allows storage only for the shaded
area shown in the figure. From Eq. (20) it may be ob-
served that, for a fixed j, O{;; represents a vector listing
the forces that may develop when a unit deflection is
applied in the fixed j direction, while keeping all the other
degree-of-freedom directions with zero deflections. The
nonzero entries of this vector coincide with the deflec-
tion directions of only those mesh points that are con-
nected with the disturbed mesh point by means of mesh
elements and deflection boundary conditions. This shows
that the O(;; matrix is sparse and usually has a large zero
area in the upper right-hand corner.

Before generating the coefficient matrix and the right-
hand side of Eq. (20), the program computes a pointer
for each of the rows of the coefficient matrix, and a pointer
for the right-hand-side vector so that the coeflicients
shown in the shaded area in Fig. II-1 (Vol. I) can be
stored compactly in COMMON as a string. Actually, the
pointers of the rows are the addresses of the words imme-
diately preceding the diagonal elements. As discussed in
Ref. 5, by the proper ordering of d; unknowns in Eq. (20),
the zero area may be increased in the upper right-hand
corner of £X;;. If the user chooses to assign zero into the
ISHUF field of the control card, the unknowns are
ordered as implied by the mesh-point labels; e.g., the
unknown deflection components of the first mesh point
are placed first, those of the second mesh point are placed
second, etc. If the user assigns ISHUF =1 or 2, the pro-
gram first tries to find a better labelling system with the
method given in Ref. 5, and uses these new mesh-point
labels in ordering the unknowns d;. For example, if mesh
point with label 25 is the first mesh point in the new
labelling system, the unknowns of this mesh point are
listed first in d;. If the user assigns ISHUF = 3, the better
labelling system is required by the program from input
data cards (number 17 in Fig. IV-1, Vol. I). The method
for relabelling described in Ref. 5 requires the genera-
tion of the mesh-point connectivity matrix N,;, which is
a binary matrix. If mesh point s is connected to mesh
point ¢ by a mesh element or by a deflection boundary
condition, N,; = N, = 1; otherwise, Ny; = N;, = 0. It is
always assumed that a mesh point is connected to itself.
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|l ] TI 1]

|

1

I

!

|

Ur(=|on e oy Al Y= a2 °.¢fj:
T

|

t

!

o ||

- ) -
U 7 %2y d_; tegy 9 = E_erj' dis

)
- O

Fig. li-1. Definition of E;;;» augmented matrix

If point s is completely constrained by the deflection
boundary conditions, Ny; = N,;; = 0 for all £, except ¢ = s.
The program generates N;; from the information pro-
vided by the element description data and deflection
boundary conditions. The connectivity matrix N,; is
always generated, since it is also used in determining
the pointers of the rows of £{;;.

2. Method of Assembly. To obtain the coefficient matrix
and the right-hand-side vector of the governing equa-
tions, the mesh elements are processed, one at a time,
first to obtain the element stiffness matrix and the ele-
ment load vector for each, and then to assemble these
according to Egs. (21) and (22) and the allocated storage.
Let A7 denote the vector in COMMON and R; denote
the pointer of the ith equation in Eq. (20). Let us assume
that the right-hand-side vector is stored after the coeffi-
cient matrix, Let Eyy;. (or Ey;) denote the augmented
matrix composed of eys; (or e;¢;) and e, (ore?,), as shown
in Fig. I1-1. Let a prime on the index indicate that the
range of unprimed index is increased by 1, and let an
underlined index indicate the largest value within the
range. With this notation, the assembly procedure may be
summarized as

r — r . r m L
- Vi'EkM'Q’CS + v Eksi'ﬂ-gstg

+ sg’j’Eksi’ M;’feKZLglh F;:;Em' (25)
where
87.,, =1 fi=j,f=iandr=R; +§ —1
87, = —1 ifff >ii’=jandr=R; + 7 (26)
87, =0 for all other possibilities
and
v, =1 ifi'=jandr=R; + }
' 27)
v, =0 for all other possibilities

7



In the program, only the nonzero Ey;- constants are
computed by the deflection boundary condition input
units and the connectivity matrix. For each ks the non-
zero entries of E,;. are stored with their values and 7
indices. The values and the indices of nonzero Qx, entries
are directly provided by the concentrated load input
cards. The binary coeflicients 87,;.and y1, are not stored,
but determined from Egs. (26) and (27). If m and g are
given, the s value of the nonzero entry of f uf, is obtained
from the element description data. Let &, and #, denote
the nonzero values and corresponding indices in Ejg;-
for a given ks, and let ¢ denote the maximum value of a,
so that 1=g=a (b and b are alternate symbols). Let d
denote the number of concentrated load input units. This
notation is used in the flow diagram corresponding to
Eq. (25) given in Fig. II-2. In the ELAS program, the
summations implied by the first term in the right-hand
side of Eq. (25) are implemented in Link 1 and the re-
mainder in Link 2.

3. Method of Solution of the Governing Equations.
Since O{;; is a symmetric and positive-definite and band-
limited matrix for the solution of Eq. (20), the Cholesky
algorithm may be applied. In this method, the decom-
posed stiffness matrix B;; from 8(;; is first computed as

Bij Bj.; = EXij (28)
where the range of §’ equals that of i. Then, from
B;;d; = &; (29)

with a forward sweep, the auxiliary unknowns dj can be
solved. Finally,

yields the unknowns with a backward sweep. In Fig. II-1
(Vol. I) the border of the zero area in the upper right-
hand corner is not always defined by the last nonzero
coefficient in each equation. This is because the shaded
areas of 9{;; and B;; are identical only when the border is
selected as shown in Fig. II-1 (Vol. I). In the ELAS pro-
gram, £{;; coefficients in the shaded area of the figure are
first modified to those of the coefficients of B;;, then &;
constants are changed to df, and finally, d} values are con-
verted to the numerical values of the d; unknowns. Then,
from Eq. (17), qi; is computed on the same area as d;.
These operations are carried out in Link 3 of ELAS.

4. Computation of Stresses. The computation of stresses
in displacement methods poses a harder problem in struc-
tures of two- or three-dimensional continuum than that in
truss and frame structures, which truly have a finite num-

¥
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Fig. li-2. Flow diagram cbrresponding to the summations
implied by Eq. (25)
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ber of deflection components for the determination of
their distorted configuration. The difficulty arises from
the fact that the structures of two- or three-dimensional
continuum actually have infinitely many deflection com-
ponents, and the relations of the type of Eq. (12) are only
approximate.

After computing the deflections as mesh functions, the
problem of stress computation with acceptable accuracy
in reasonable machine times still remains. Experience has
shown that the use of Eq. (13) and then Eq. (6) presents
the following drawbacks: (1) the exact location of the point
for which the stresses are computed is not known, and
(2) the computed stresses may be largely different from
the actual stresses. Despite these setbacks, stress compu-
tation of this type is being widely used because it is modu-
lar in elements, just as is the generation of the governing
equations in Eq. (20), a feature that facilitates automa-
tion. In the ELAS program, the best-fit stress computation
method of Ref. 4 is used for structures of continuum. This
method is just as easy to automate and has the following
advantages: (1) stresses are computed at the points where
the deflections are obtained, (2) the accuracy in stresses
is comparable with that of deflections, and (3) the stress
boundary conditions of Eq. (4) may be satisfied during
the computation of the stresses of boundary points. This
scheme was initially devised for triangular finite elements

(Ret. 6).

In the following paragraphs the stress computation
in structures of two- and three-dimensional continua is
explained. The computation of stresses in structures com-
posed of elements of one-dimensional continuum is per-
formed by multiplying element stiffness matrices with
computed deflections.

Mesh Line Set. Suppose that the deflections at the mesh
points of a structure of three-dimensional continuum are
available and that the stresses at mesh point s are re-
quested. The question of how much deflection data should
be included in the computation is of practical importance
because the computation time rapidly increases with this
quantity. Experience with the method of computing
stresses in the element indicates that deflections of the
set of elements meeting at mesh point s are sufficient for
the computation of its stresses with acceptable accuracy.
The mesh points of the element set are called “mesh-point
set” and the mesh lines meeting at the common mesh
point s are called “mesh-line set.” The scheme adopted in
ELAS is modular in the mesh-line set—the next-best unit
after elements. The stress computation at a mesh point
starts with the determination of the element set, and

JPL TECHNICAL REPORT 32-1240

consequently, the mesh-line set associated with this
mesh point. Then, if this mesh point is on the bound-
ary, the average boundary surface area associated with
this node and the direction cosines of the outer normal
are computed.

Selection of Local Coordinate Systems at the Mesh
Points. In a given problem, it is desirable to have one
fixed, right-handed coordinate system to express the
stresses. However, this is not practical for structures com-
posed of anisotropic material, at the boundary points
where the outer normal is not coincident with the coordi-
nate lines, and for shell structures. The following method
is adopted in the ELAS program for the selection of local
coordinate systems at the mesh points.

At an internal node, the local axes may be taken as the
material axes unless the material is isotropic, in which
case they should be taken (1) parallel to the overall
coordinate system in plates and three-dimensional solids,
and (2) as the principal curvature directions and the nor-
mal of the middle surface, or any other suitable system
that the user inputs in shells. At a boundary node, the
first local axis may be coincident with the outer normal,
and the directions of the remaining local axes may be
determined so that (1) the local third axis becomes the
middle surface normal in plates and shells, and (2) the
direction defined by the cross-product of outer normal
with the overall axis, which makes the largest angle with
the outer normal, then becomes the second local axis in
three-dimensional solid structures.

Stress Computation at an Internal Mesh Point. Let j be
the label of a mesh line in the mesh-line set, with Ap,.
the position vector and Auy. the displacement vector of
the far end of the mesh line relative to the mesh point
where the local coordinates are defined. As the first
approximation of the strain along the jth mesh line, the
following may be written:

Apy: Aley-
€= ———=— 31
App: Bpp 31

The same strain may be obtained from the strain tensor
of mesh point s as

_ Dpar App- €arp

32
App App: (32)

Equating Eq. (31) to Eq. (32) and cancelling the denomi-
nators results in the following expression:

(Bper App-); €arpr = (Bpy: Atiy:); (33)
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The number of equations in Eq. (33) is equal to the
range f. Usually the range of j is greater than the num-
ber of independent components of the strain tensor. (If
not, the mesh may be readjusted by repeating the deflec-
tion computation.) Therefore, in Eq. (33), there are more
equations than the unknown strain components. Such a
set may be solved by least squares, first by multiplying
both sides with the transpose of the coefficient matrix,
then by inverting the new coefficient matrix. This leads to

€wpr = [(Apar Apg:)i( Aps: Apv )il (Bps: Apv:); (Apy: Atsy);
(34)

where the range of i is equal to that of j. The stresses at
the mesh point may be obtained by substituting €. from
Eq. (34) into Eq. (5). If the problem is a plane-strain
problem, one should first impose

€330 = €1r3r = €301 T €grgr = €3050 =0 (35)

on Eq. (33). For plane-stress problems, Dq-g.ys- in Eq. (5)
should be modified to guarantee

€130 = €gr1r = €prgr = €3rp0 = ggrgr =0 (36)

For the bending of plates and shells, €..g- should be inter-
preted as curvature changes and, in Eq. (33), (Apy- Aty.);
should be taken as the projection of the rotations vector
of the far-end mesh point relative to the current mesh
point in the jth mesh line on7, X A7 direction, where 7, is
the unit vector of the third local axis. Also, the conditions
in Eq. (36) should be imposed on De gy s and Eq. (5)
should be replaced by

t3
Mys = =15 Dysapr €apr (37)

10

where My.s. denotes the bending moments and ¢ is the
thickness. The membrane case of shells is identical with
the plane-stress case, provided that Eq. (5) is replaced
with

Ny:s: =t Dyr5rarp €arpr (38)
where Ny-5- denotes the membrane forces.

Stress Computation at a Boundary Mesh Point. The
procedure for stress computation at a boundary mesh
point is basically the same as the computation at an
internal mesh point. Here, the stress boundary conditions,
expressed in terms of the strains, are included in Eq. (33)
before the application of the least-squares scheme for
their solution. The stress boundary conditions may be
written as

ng — P

e Diegiyrsr €y = 39
Diyier a'frydr €yrs D, (39)

171717

where p.- represents the prescribed boundary stresses.
If at the boundary mesh point the deflections, in place
of the stresses, are prescribed, R. reaction forces may
be found from the equilibrium equations of the boundary
node, and the following may be written:

Re
pa' - = A (40)

where A is the average boundary surface area associated
with the mesh point. In Eq. (39), the reason for division
by Dj:y1-y- is to reduce the coefficients of strains in the
stress boundary equations to the same order of magni-
tude as those of Eq. (33). The procedure described here
for a three-dimensional solid may be readily extended to
other types of structures with the help of previous
paragraphs.
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Ill. COMMON Variables and COMMON Blocks
of the Program

The memory organization in each of the four links of
ELAS is illustrated in Fig. III-1. Table III-1 lists the
blocks of COMMON sequentially, and gives a short
description of each block. In the table, the variable-
address blocks are listed with increasing COMMON ad-
dresses. It should be noted that the variable-address
blocks in COMMON are packed in a string, one after the
other, without any waste of core locations. Such blocks
may be properly located by means of pointers, which are
also in COMMON. A pointer is a word whose content
is one less than the COMMON address of the first word

JPL TECHNICAL REPORT 32-1240

of the associated COMMON block. The constituents of
Block Group 1 are listed in Table VI-3 (Vol. 1), in the
order in which they appear in COMMON. These con-
stituents are alphabetically ordered with their symbolic
names in Table III-2. In Table III-3, the meanings of
entries of important vectors, especially those defined by
the pointers, are given. The additional COMMON vari-
ables of Link 4 are listed alphabetically in Table I11-4,
and with increasing COMMON addresses in Table III-5.
Table III-5 also contains a short description of these
variables.

n
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Table 1ll-2. Alphabetical listing of the constituents of COMMON block group 12

Location in : - Location in . i e
Symbol COMMON Brief description Symbol COMMON Brief description
AA (EARE Name of whole COMMON block for floating- IELT 28 Element type number
point references IERR 79 Error indicator
ACEL 39 Body force per unit volume IGEM 78 Indicator for structures inscribed in
ALl 83 Thermal expansion coefficient of an element {Z = 0)-plane
in first material axis direction IH 10 Maximum number of vertices
AL2 84 Th?rmul expunslon. coefficient Of. an element A 62 Pointer for thermal expansion coefficient array
in second material axis direction
. 1c 74 Pointer for dbc unit constants array
AL3 85 Thermal expansion coefficient of an element
in third material axis direction i) 61 Pointer for material constants array
CONS 45 Constant for element load vector s 77 Pointer for subelement stiffness matrix
. . (11S = 350)
DG 82 Temperature gradient for an element in
direction y (or 2) IMAT 7 Number of material types
DGY 332 Temperature gradient along local y-axis for IMES 326 Indicator for mesh topology input
an element IMET 31 Material type number
DGZ 331 Temperature gradient along local z-axis for IMFI 15 Number of angle types
an element .
IMMX 12 Number of torsion constants types
DT 81 Value of temperature change for an element L
IMMY 13 Number of y-moment of inertia types
D21 86106 Material constants for.an element N
IMMZ 14 Number of z-moment of inertia types
Gl 47 First direction cosine of acceleration vector .
1MS 34 Number of vertices of current element
G2 48 Second direction cosine of acceleration vector .
IN 1 Total number of nodal points
G3 49 Third direction cosine of acceleration vector
IND 33 IND = IDEG *IN
1A 1~ Name of whole COMMON block for fixed- .
. INP 42 Indicator for output level
point references
i i ¢
1ARE 16 Number of cross-sectional area types Ihx ? Number of last link to be executed
1BB 50 Pointer for IBB array IORD 37 Nun:ber of worc.ls allocated for the reduced
stiffness matrix
1BN 2 Total number of dbc input units
1001 38 IORD1 == IORD + 1
1BO 60 Pointer for 1BO array
P 4 Total number of nonzero concentrated load
1BUN 327 indicator for boundary conditions input components
ICAR 66 Pointer for cross-sectional areas array IPBG 43 Integer constant for element load vector
ICF1 70 Pointer for angles array IPEN 44 Integer constant for element load vector
1CIX 67 Pointer for torsional constants array IPIR 329 Indicator for local coordinate axes selection
1y 68 Pointer for y-moments of inertia array IPR 333 Pointer for pressure array
1C1Z 69 Pointer for z-moments of inertia array IPRS 5 Number of pressure fypes
ICOR 328 Indicator for coordinates input 1SDT 348 Number of temperature change types
IDEF 75 Pointer for unknown deflections array ISDY 347 Numbe.r of temperature gradients along local
(initially loads array) y-axis
1SbZ 346 Number of temperature gradients along local
IDEG 8 Degrees of freedom at a node . P s 9
z-axis
1DS 36 Order of the subelement stiffness matrix ISHUF 35 Relabeling indicator
DT 63 Pointer for temperature changes array IST 76 Pointer for reduced stiffness matrix of the
IDY 64 Pointer for temperature gradients array whole structure
(y-direction) ISTR 27 Indicator for plane-strain case
DZ 334 Pointer for temperature gradients array ISUM 32 Number of equations in the reduced system
{z-direction) IT 3 Total number of elements

25ee Table {i1-1 for sequence and descriptions of COMMON blocks. Table 111-2 is a reordering of Table VI-3 {Vol. 1), in both of which the **General Descriptors {V*’ sec-
tion of the block is partly excluded.
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Table 111-2 (contd)

Location in . s Location in -
Symbol COMMON Brief description Symbol COMMON Brief description
ITAP 41 Chain program tape number J4 53 Pointer for J4W array
ITAS 335 Scratch tape number J5 54 Pointer for J5W array
ITE 65 Pointer for thicknesses array J6 55 Pointer for J6W array
ITEM 29 Temperature change type number 7 56 Pointer for J7W array
inc 30 Thickness type number 8 57 Pointer for J8W array
ITYPE ) Indicator for material type 19 345 Pointer for JOW array
1V 46 Pointer for diagonal-element count vector J10 344 Pointer for J10W array
IXX 71 Pointer for X-coordinates array M 25 Label of current element
Yy 72 Pointer for Y-coordinates array N; 17-24 Labels of vertices of an element
122 73 Pointer for Z-coordinates array NTIC 349 Number of thickness types
18 1 Maximum number of words to describe an P 107-130 Load vector of a subelement
element PRES 330 Pressure value for an element
JARE 340 Type number of cross-sectional area s 351> Subelement stiffness matrix
IMFI 15 Number of angle types TE 80 Value of thickness for an element
IMMX 339 Type numbel: of the torsional constant about uy 131154 Deflections due to temperature changes for
local x-axis an element
IMMY 338 Type number of the sectional moment of inertia X 155-162 Overall X-coordinates for vertices of an element
about local y-axis
XD 179-185 X-coordinates of vertices, other than the first
JMMZ 337 Type number of the sectional moment of inertia vertex, of an element relative to the first
about local z-axis vertex
JPRS 343 Type number of pressure Y 163170 Overall Y-coordinates of vertices of an element
Jspy 342 Type number of temperature gradient along YD 186-192 Y-coordinates of vertices, other than the first
local y-oxis vertex, of an element relative to the first
vertex
JSDZ 341 Type number of temperature gradient along
local z-axis z 171-178 Overall Z-coordinates of vertices of an element
n 50 Pointer for JIW array y4:] 193-199 Z-coordinates of vertices, other than the first
vertex, of an element relative to the first
J2 51 Pointer for J2W array vertex
J3 52 Pointer for J3W array ZGEM 40 Floating-point equivalent of IGEM
16 JPL TECHNICAL REPORT 32-1240



Table 1Il-3. Meanings of the entries of important vectors

Vector in COMMON

Meaning of rth entry of the vector (all divisions are in integer arithmetic sense}

AA vector
D21 vector
IA vector

IBB-pointer-related vector

IBO-pointer-related vector

ICAR-pointer-related vector
ICFl-pointer-related vector
ICIX-pointer-related vector
IClY-pointer-related vector
ICiZ-pointer-related vector

IDEF-pointer-related vectors

IDT-pointer-related vector
IDY-pointer-related vector
1DZ-pointer-related vector
HA-pointer-related vector
1IC -pointer-related vector

11D-pointer-related vector

HS-pointer-related veclor

IPR-pointer-related vector

IST-pointer-related vector

The rth component of the total COMMON vector in floating-point mode
The rth component of a row-listed upper 6 X 6 material matrix {see Fig. 1lI-2b, Yol. 1), if if exists
The rth component of the total COMMON vector in fixed-point mode

1BB value of Jth degree of freedom direction at ith node {user’s label); i = 1 + (r — 1)/IDEG,
J=r —{i — 1)* IDEG (see Table VI-2, Vol. 1)

IBO value of Jth degree of freedom direction at ith node {user’s label); i = 1 + (r — 1)/IDEG,
J = r — (i — 1)* IDEG (see Table VI-2, Vol. i)

Yalue of rth-type cross-sectional areq, if it exists

Value of rth-type angle defining principal axes of cross section, if it exists
Value of rth-type torsional constant, if it exists

Yalue of rth-type y-moment of inertia, if it exists

Valve of rth-type z-moment of inertia, if it exists

(1) Value of prescribed concentrated load in Jth degree of freedom direction at node i (user’s
label); i = 1 + {r — W)/IDEG, J = ¢ — (i — 1)* IDEG

(2) Valve of rth component of reduced load vector (the right-hand-side vector in Fig. 1I-1, Vol. 1)

(3) Value of rih comp t of reduced deflection vector {{d} vector in Fig. 1I-1, Yol. 1)

{4) Value of deflection at the Jth degree of freedom direction at node i {user’s label); i =1 +
{r — 1)/IDEG, J =r — (i — 1)* IDEG
For (2) and (3) the node i {user's label) and direction J associated with the rth entry may be obtained
as follows: Let r” be the entry number of the word, in IBB-pointer-related vector, where the abso-
tute value is r and r”th entry of 1BO-pointer-related vector is —1. Then i = 1 + (r” — 1)/IDEG,
and J =’ — {i — 1)* IDEG

Yalve of rth-type temperature increase, if it exists
Value of rth-type temperature gradient in y-direction, if it exists
Yaluve of rth-type temperature gradient in z-direction, if it exists

Value of thermal expansion coefficient in the Jth material axes direction in element i; i = 1 -+
{r — ks J = r — k2* (i — 1), where k2 is 1, 2, or 3, depending upon whether ITYPE is O, 1,
or 2, respectively

Value C of Jth degree of freedom direction at ith node {user's label); i = 1 4 (r — 1)/IDEG,
J =y — (i — 1)* IDEG {see Table VI-2, Vol. 1}

Yalue of Jth material constant of material type i; i = 1 + {r — 1)/ks, J = r — ka* (i — 1), where
kiis 2, 9, or 21, depending upon whether ITYPE is 0, 1, or 2, respectively

Element knn of the free-free subelement sfiffness matrix, m = 1 -+ {r — 1)/ID§’, n = r — ID§’*
{(m — 1); m corresponds to m'th degree of freedom direction (m’ = 1 + (m — 1)/IMS') at
vertex m” (m” == m — IM$'*{m — 1); n corresponds to n'th degree of freedom direction
(n" =1 4 (n — 1)/IMS) at vertex n” (" = n — IDS'* (n" — 1); IMS’ is the number of verfices
of subelement, and IDS’ = IMS’* IDEG

Yalue of rth-type pressure, if it exists

{1) Element K.» of the stiffness matrix of the supported structure. To find mth direction, enter IBB-
pointer-related vector with the entry number r’ of the word, in U-pointer-related vector, which
is closest to, but not greater than r. Llet r” be the entry number of the word, in IBB-pointer-
related vector, whose absolute value is r’ and the r”th entry in IBO-pointer-related vector is
—1; mth direction corresponds to m”th degree of freedom direction at node m’ (user's label);
m =14 {r" — 1)/IDEG, m" = r" — {m" — 1)* IDEG. To find nth direction, determine s’ by
adding to r’ the difference between r and the r'th entry of IU-pointer-related vector. let s” be
the entry number of the word in IBB:pointer-related vector, whose absolute value is s’ and the
s”th entry in IBO-pointer-related vector is — 1; nth direction corresponds to n”th degree of free-
dom direction at node n’ {user's label); n’ = 1 4+ (s” — 1)/IDEG, n” = 5" — (n" — 1)* IDEG

{2) Value of residual force acting at node i in direction J, - where i = 1 + {r — 1J/IDEG, J = r —
{i — 1)* IDEG
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Table 111-3 (contd)

Vector in COMMON

Meaning of rth entry of the vector {all divisions are in integer arithmetic sense)

ITE-pointer-related vector
1U-pointer-related vector

IXX-pointer-related vector
1YY-pointer-related vector
1ZZ-pointer-related vector
J1-pointer-related vector
J2-pointer-related vector

J3-pointer-related vector

J4-pointer-related vector

J5-pointer-related vector

J6-pointer-related vector

J7-pointer-related vector

J8-pointer-related vector

J9-pointer-related vector

J10-pointer-related vector
N vector

MAX-pointer-related vector

P vector

S matrix

UV vector

X vector
XD vector
Y vector
YD vector
Z vector

ZD vector

Value of rth-type thickness, if it exists

Entry number in 1ST-pointer-related vector of rth diagonal element of the reduced stiffness matrix
X-coordinate of node r {user’s label)

Y-coordinate of node r (user's label)

Z-coordinate of node r {user’s label), if it exists

J1W value of rth element (see Table 1V-3, Vol. 1)

J2W value of rth element (see Table 1V-3, Yol. 1}

J3W value of rth element {see Table 1V-3, Yol. |)

JAW vdlue of rth element (see Table 1V-3, Vol. 1)

J5W value of rth element (see Table 1V-3, Vol. I)

J6W value of rth element (see Table 1V-3, Vol. 1), if it exists
J7W value of rth element {see Table 1V-3, Vol. 1}, if it exists
J8W value of rth element (see Table V-3, Vol. 1), if it exists
JOW value of rth element (see Table 1V-3, Yol. |), if it exists
J10W value of rth element (see Table V-3, Vol. 1}, if it exists
The label {user’s) of the rth vertex of an element

Number of nonzero entries above rth diagonal element of the decomposed reduced stiffness matrix
{see Fig. 11-1, Vol. 1)

Element load acting in direction J of ith vertex of a subelement; J = 1 -+ {r — 1)/IMS', i = r —
(J — 1)* IMS’ (IMS’ = number of vertices of the subelement)

See {1S-pointer-related vector

Deflection in direction J of ith vertex of a subelement subjected to temperature change in local coor-
dinates; J =1 {r — 1)/IMS', i = r — {J — 1)* IMS’ (IMS’ = number of vertices of subelement)

X-coordinate of rth vertex of an element

X-coordinate, relative to the first vertex, of {r + 1)st vertex of an element
Y-coordinate of rth vertex of an element

Y-coordinate, relative to first vertex, of {r + 1)st vertex of an element
Z-coordinate of the rth vertex of an element

Z-coordinate, relative to the first vertex, of (r + 1)st vertex of an element

18
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Table lli-4. Alphabetical list of additional COMMON variables for Link 4°

Symbol  COMMON location Symbol COMMON location Symbol COMMON location Symbol COMMON location
A 1478615415 ICAS 212 WG 14660--14749 NU 292-294
ANGLE 211 ICLA 206 M1 293 QF 253258
ARE 205 ICLAS 274-277 pidi 292 QN 247252
AST 203 ICN 201 Js1 294 RED 265-270
B 15416-15479 ICot 295 M 202 RES 259264
z;;s ';’;‘):Zi ICON 210 MAC 1440014659 SIR 223-225
o a7 :'E’R ;‘]’; MSET 15596-15695 SR 235-240
C 15480-15495 1M 208 Mg 215 w 1569615704
DD 14750-14785 IMEL 207 NB 214 XE 244-246
DIN 226-234 INEON 204 NBAN 278-287 XN 241-243
ETA 229-231 IONE 200 NEL 14000-14399 X1t 226-228
FF 14000~15704 RIG 296 NES 295--297 ZTA 232-234

iC 209 IROT 216 NSET 15496-15595

2See Table {{1-5 for meanings of variables.

Table I11-5. List of additional COMMON variables for Link 4*

Location in COMMON Symbol Brief description
1-199 This portion of COMMON is as in Table Vi-3 of Vol. |
200 1ONE Total number of one-dimensional elements in the structure
201 ICN Label of current mesh point (ICN varies from 1 fo IN}
202 LM Total number of non-one-dimensional elements meeting at mesh point ICN
203 AST Indicator containing * or BCD blank, depending upon whether mesh point ICN is on boundary or not,
respectively
204 INBON Indicator containing 1 or 0, depending upon whether mesh point ICN is on boundary or nof, respectively
205 ARE Average boundary surface area for mesh point ICN, if it is on boundary
206 ICLA Total number of class® types for elements of material type group IM at mesh point ICN
207 IMEL Total number of material types at mesh point ICN
208 M Current material type group number (IM varies from 1 to IMEL)
209 IC Current class? type group number (IC varies from 1 to ICLA)
210 1ICON Sequence number of current strain-deflection equation at mesh point ICN for material group IM and for
class® group IC
2n ANGLE Angle between Xl local axis and the 1-2 line of the lowest labeled shell element attached to mesh
point ICN
212 ICAS Class® type number of ICth class” group of IMth material group at mesh point ICN
213 IE Number of mesh elements {of class® group IC of material group IM) plus 1 at mesh point ICN
214 NB Total number of mesh points in node set at mesh point ICN
215 MB Number of boundary points attached to mesh point ICN
216 IROT Indicator containing 0 or 1, depending upon whether local axes at mesh point ICN are parallel to overall
axes or not, respectively
27 BST Indicator containing BCD blank or **, depending upon whether local axes at mesh point ICN are parallef
to overall or not, respecfivelyk
220-222 BIR Direction cosines of outer unit normal vector at mesh point ICN, if it is on boundary

aThis table is not applicable fo subrautine DIMI of Link 4.
bClass types are those of Table VI-6, Vol. I,
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Table [11-5 (contd)

Location in COMMON Symbol Brief description

223-225 SIR Vector heading towards structure at mesh point ICN, if it is on boundary

226-234 DIN Direction cosines of local axes in overall coordinate system at mesh point ICN (the columns of DIN are
named as XIf, ETA, and ZTA)

235240 SR Independent comp ts of stress tensor for ICth class® group of IMth material group at mesh point ICN

241-243 XN Overall coordinates of mesh point ICN

244-246 XF Overall coordinates of 1ith vertex of ILth element of ICth class® group of IMth material group at mesh
point ICN

247-252 QN Deflection components in overall coordinates of mesh point ICN

253-258 QF Deflection components in overall coordinates of mesh. point whose overall coordinates are in XF

259-264 RES Residual forces® in overall coordinates at mesh point ICN, if on boundary

265-270 RED Relative deflections {in overall coordinates) of mesh point related with XF vector with respect 1o mesh
point ICN

271-273 BAS Direction cosines of 1-2 line of the lowest labeled element of class® group IC of material group IM at
mesh point ICN

274277 ICLAS Number of class® groups in each material group {maximum 4) of mesh point ICN

278-287 NBAN List of labels of boundary mesh points attached to mesh point ICN

292-294 NU Vector containing the sequence numbers of the vertices after {JP1), before (JM1), and above (JS1) mesh
point ICN in the 1th mesh element of the node set {with Table 111-5, vol. 1)

292 P See NU (1)
R 293 IM1 See NU (2)
294 Jsi1 See NV (3)

295-297 NES Vector containing number of independent strain comp ts (ICOL), number of right-hand sides (IRIG)
and indicator of right-hand-side arrangement (IDR) (IDR = 0 means lineal strains first, IDR = 1 means
rotational strains first) for current ICN/IM/IC

295 IcoL See NES {1)
296 IRIG See NES (2)
297 IDR See NES (3)
329-349 This portion of COMMON is as shown in Table VI-3, Yol. 1. See also Fig. 111-3, Link 4
349-13999 See Fig. I11-1, Link 4
14000-15704 FF Yector containing information for stress conputation at mesh point ICN
14000-14399 NEL Element set information of mesh point ICN (see Table YI-7, Vol. 1)
14400-14659 MAC Table for classes and material of element set at mesh point ICN (see Table VI-7, Vol. 1)
14660-14749 IWG Yector of weights of strain-deflection equations for current ICN/IM/IC
14750-14785 DD Material matrix for current ICN/IM/IC ‘
14786-15415 A Augmented matrix of strain-deflection equations for current ICN/IM/IC
1541615479 B Coefficient matrix {or its inverse) of the least-squares equations for strain for current ICN/IM/IC
15480-15495 C Right-hand-side vector(s) of the least-squares equations for strains for current ICN/IM/IC
15496-15595 NSET List of labels of mesh points on the boundary and attached to mesh point ICN
1559615695 MSET Auxiliary array for NSET
15696-15704 w Direction cosines of new material axes in the old for current ICN/IM/IC
cResidual forces are those listed by Output ltem 20 (see Sect. Vi-D and VI-E, Vol. 1).

20
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